Local noncollapsing for complex Monge–Ampère equations

نویسندگان

چکیده

Abstract We prove a local volume noncollapsing estimate for Kähler metrics induced from family of complex Monge–Ampère equations, assuming Ricci curvature lower bound. This can be applied to establish various diameter and gradient estimate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solution for Nonlinear Local Fractional Partial Differential Equations

In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...

متن کامل

Noncollapsing Space-Filling Designs for Bounded Nonrectangular Regions

Many researchers use computer simulators as experimental tools when physical experiments are infeasible. When computer codes are computationally intensive, nonparametric predictors can be fitted to training data for detailed exploration of the input-output relationship. The accuracy of such flexible predictors is enhanced by taking training inputs to be “space-filling”. If there are inputs that...

متن کامل

Growth of meromorphic solutions for complex difference‎ ‎equations of Malmquist type

‎In this paper‎, ‎we give some necessary conditions for a complex‎ ‎difference equation of Malmquist type‎ $$‎sum^n_{j=1}f(z+c_j)=frac{P(f(z))}{Q(f(z))}‎,$$ ‎where $n(in{mathbb{N}})geq{2}$‎, ‎and $P(f(z))$ and $Q(f(z))$ are‎ ‎relatively prime polynomials in $f(z)$ with small functions as‎ ‎coefficients‎, ‎admitting a meromorphic function of finite order‎. ‎Moreover‎, ‎the properties of finite o...

متن کامل

The analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform

In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2022

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2022-0069